Gene ID Number

7048

Modification Site

Tyr259

Swiss Prot

P37173

Subcellular location

Cytoplasm

Tested applications

IF(IHC-P)

French translation

anticorps

Clonality

Polyclonal

Immunogen range

250-270/567

Concentration

1ug per 1ul

Excitation emission

590nm/617nm

Target Antigen

TGFBR2 Tyr259

Modification

Phosphorylation

Crossreactivity

Human, Mouse, Rat

Conjugated

Alexa conjugate 1

Conjugated with

ALEXA FLUOR® 594

Clone

Polyclonal antibody

Recommended dilutions

IF(IHC-P)(1:50-200)

Purification

Purified by Protein A.

Conjugation

Alexa Fluor,ALEXA FLUOR® 594

Category

Conjugated Primary Antibodies

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-TGFBR2 Tyr259 PAb ALEXA FLUOR 594

Specificity

This is a highly specific antibody against TGFBR2 Tyr259.

Long name

TGFBR2 Tyr259 Polyclonal Antibody , ALEXA FLUOR 594 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

KLH conjugated synthesised phosphopeptide derived from human TGF beta Receptor II around the phosphorylation site of Tyr259

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Synonyms

AAT3; FAA3; LDS2; MFS2; RIIC; LDS1B; LDS2B; TAAD2; TGFR-2; TGFbeta-RII; TGF-beta receptor type-2; TGF-beta type II receptor; Transforming growth factor-beta receptor type II; TGF-beta receptor type II; TbetaR-II; TGFBR2

Background of the antigen

Transmembrane serine/threonine kinase forming with the TGF-beta type I serine/threonine kinase receptor, TGFBR1, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and the activation of TGFRB1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways.