Modification Site

None

Gene ID Number

7046

Swiss Prot

P36897

Subcellular location

Cytoplasm

French translation

anticorps

Modification

Unmodified

Clonality

Polyclonal

Immunogen range

310-360/501

Concentration

1ug per 1ul

Excitation emission

343nm/442nm

Tested applications

FCM, IF(IHC-P)

Crossreactivity

Human, Mouse, Rat

Conjugated with

ALEXA FLUOR® 350

Target Antigen

TGF beta Receptor I

Clone

Polyclonal antibody

Purification

Purified by Protein A.

Conjugation

Alexa Fluor,ALEXA FLUOR 350

Category

Conjugated Primary Antibodies

Host Organism

Rabbit (Oryctolagus cuniculus)

Recommended dilutions

FCM(1:20-100), IF(IHC-P)(1:50-200)

Also known as

Anti-TGF beta Receptor I PAb ALEXA FLUOR 350

Long name

TGF Beta R1 Polyclonal Antibody, ALEXA FLUOR 350 Conjugated

Specificity

This is a highly specific antibody against TGF beta Receptor I.

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human TGF-beta R1

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 350 conjugates can be used in multi-color flow cytometry with FACS's equipped with a second red laser or red diode.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Synonyms

AAT5; ALK5; ESS1; LDS1; MSSE; SKR4; ALK-5; LDS1A; LDS2A; TGFR-1; ACVRLK4; TGF-beta receptor type-1; Activin A receptor type II-like protein kinase of 53kD; Activin receptor-like kinase 5; Serine/threonine-protein kinase receptor R4; TGF-beta type I receptor; Transforming growth factor-beta receptor type I; TGF-beta receptor type I; TbetaR-I; TGFBR1

Background of the antigen

Transmembrane serine/threonine kinase forming with the TGF-beta type II serine/threonine kinase receptor, TGFBR2, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and the activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. For instance, TGFBR1 induces TRAF6 autoubiquitination which in turn results in MAP3K7 ubiquitination and activation to trigger apoptosis. Also regulates epithelial to mesenchymal transition through a SMAD-independent signaling pathway through PARD6A phosphorylation and activation.