Gene ID Number
7049
Modification Site
None
Tested applications
IF(IHC-P)
French translation
anticorps
Clonality
Polyclonal
Modification
Unmodified
Concentration
1ug per 1ul
Excitation emission
590nm/617nm
Target Antigen
TGF Beta R3
Conjugated with
ALEXA FLUOR® 594
Crossreactivity
Human, Mouse, Rat
Conjugated
Alexa conjugate 1
Recommended dilutions
IF(IHC-P)(1:50-200)
Clone
Polyclonal antibody
Purification
Purified by Protein A.
Category
Conjugated Primary Antibodies
Conjugation
Alexa Fluor,ALEXA FLUOR® 594
Host Organism
Rabbit (Oryctolagus cuniculus)
Also known as
Anti-TGF Beta R3 PAb ALEXA FLUOR 594
Specificity
This is a highly specific antibody against TGF Beta R3.
Long name
TGF Beta R3 Polyclonal Antibody, ALEXA FLUOR 594 Conjugated
Cross-reactive species details
Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.
Source
This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human TGFBR3
Storage conditions
Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.
Properties
For facs or microscopy Alexa 1 conjugate.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.
Synonyms
Beta glycan; Betaglycan; Betaglycan proteoglycan; BGCAN; TGF beta receptor type 3; TGF beta receptor type III; TGF beta Receptor III; TGFB R3; TGFBR 3; TGFBR3; TGFR 3; TGFR3; Transforming Growth Factor Beta Receptor III; Transforming growth factor beta receptor III betaglycan 300kDa.
Background of the antigen
Membrane Receptors Transforming growth factor beta is a multifunctional cytokine known to modulate several tissue development and repair processes, including cell differentiation, cell cycle progression, cellular migration, adhesion, and extracellular matrix production. There are 3 forms encoded by separate genes TGFB1, TGFB2, and TGFB3. The diverse effects of TGF beta are mediated by the TGF beta receptors and cell surface binding proteins. In addition to type I TGF beta receptor (TGFBR1) and type II (TFGBR2), type III (TGF beta III receptor) has been identified. It is a glycoprotein that binds TGF beta and exists in both a membrane bound and a soluble form. It may serve as a receptor accessory molecule in both the TGF beta and fibroblast growth factor systems. TGF beta III receptor lacks a recognizable signaling domain and has no clearly defined role in TGF beta signaling. Endothelial cells undergoing epithelial mesenchymal transformation express TGF beta III receptor, and TGF beta III receptor specific antisera inhibits mesenchyme formation and migration. Misexpression of TGF beta III receptor in nontransforming ventricular endothelial cells conferrs transformation in response to TGFB2. These results support a model where TGF beta III receptor localizes transformation in the heart and plays an essential, nonredundant role in TGF beta signaling. TGF beta III receptor, or beta glycan, can function as an inhibin coreceptor with ActRII. TGF beta III receptor binds inhibin with high affinity and enhances binding in cells coexpressing ActRII and TGF beta III receptor. Inhibin forms crosslinked complexes with both recombinant and endogenously expressed TGF beta III receptor and ActRII. TGF beta III receptor confers inhibin sensitivity to cell lines that otherwise respond poorly to this hormone.