Excitation Emission


Gene ID number


Modification site




Tested applications


French translation






Target Antigen

TGF Beta R3


1ug per 1ul

Additional conjugation



Human, Mouse, Rat


Polyclonal antibody


Conjugated Primary Antibodies

Host Organism

Rabbit (Oryctolagus cuniculus)

Recommended dilutions

WB(1:100-1000), IHC-P(1:100-500)

Purification method

This antibody was purified via Protein A.

Long name

TGF Beta R3 Polyclonal Antibody, Biotin Conjugated


This is a highly specific antibody against TGF Beta R3.


KLH conjugated synthetic peptide derived from human TGFBR3

Crossreactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Storage conditions

Keep the antibody in an aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Store refrigerated at 2 to 8 degrees Celcius for up to 1 year.


Beta glycan; Betaglycan; Betaglycan proteoglycan; BGCAN; TGF beta receptor type 3; TGF beta receptor type III; TGF beta Receptor III; TGFB R3; TGFBR 3; TGFBR3; TGFR 3; TGFR3; Transforming Growth Factor Beta Receptor III; Transforming growth factor beta receptor III betaglycan 300kDa.


If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.Biotin conjugates can be detected by horseradish peroxidase, alkaline phosphatase substrates or anti biotin conjugated antibodies. Avidin and Streptavidin bind to the small biotin and are couple to HRP or AP for ELISA. To break the streptavidin Biotin bond we suggest to use a 6 molar guanidine HCl solution with acidity of pH 1.6.

Antigen background

Membrane Receptors Transforming growth factor beta is a multifunctional cytokine known to modulate several tissue development and repair processes, including cell differentiation, cell cycle progression, cellular migration, adhesion, and extracellular matrix production. There are 3 forms encoded by separate genes TGFB1, TGFB2, and TGFB3. The diverse effects of TGF beta are mediated by the TGF beta receptors and cell surface binding proteins. In addition to type I TGF beta receptor (TGFBR1) and type II (TFGBR2), type III (TGF beta III receptor) has been identified. It is a glycoprotein that binds TGF beta and exists in both a membrane bound and a soluble form. It may serve as a receptor accessory molecule in both the TGF beta and fibroblast growth factor systems. TGF beta III receptor lacks a recognizable signaling domain and has no clearly defined role in TGF beta signaling. Endothelial cells undergoing epithelial mesenchymal transformation express TGF beta III receptor, and TGF beta III receptor specific antisera inhibits mesenchyme formation and migration. Misexpression of TGF beta III receptor in nontransforming ventricular endothelial cells conferrs transformation in response to TGFB2. These results support a model where TGF beta III receptor localizes transformation in the heart and plays an essential, nonredundant role in TGF beta signaling. TGF beta III receptor, or beta glycan, can function as an inhibin coreceptor with ActRII. TGF beta III receptor binds inhibin with high affinity and enhances binding in cells coexpressing ActRII and TGF beta III receptor. Inhibin forms crosslinked complexes with both recombinant and endogenously expressed TGF beta III receptor and ActRII. TGF beta III receptor confers inhibin sensitivity to cell lines that otherwise respond poorly to this hormone.